
FINANCE 1~3 RECAP

1. Risk Management

Coherent Risk Measure: A risk measure ρ (X) defined on losses is said to be coherent if it satisfies the
following properties.

• I. ρ (X + c) = ρ (X) + c Translation Invariance
• II. ρ (λX) = λρ (X) , λ > 0 Positive Homogeneity (not affected by the units of measurement)
• III.ρ (X + Y ) ≤ ρ (X) + ρ (Y )Subadditivity
• IV.If P (X ≤ Y ) = 1then ρ (X) ≤ ρ (Y ) Monotonicity

VaR is defined by
V aRα (X) = inf {x|P (L > x) ≤ 1− α} = inf {x|G (x) ≥ α}

= G−1 (α) when it exists.
When the distribution function is continuous,

CV aRα (X) = E [X|X ≥ V aRα (X)]

otherwise

CV aRα (X) =
E
[
X · 1{X≥V aRα(X)}

]
1− α

+ V aRα (X) · (1− α− P (X ≥ V aRα (X)))

The following table shows the properties of variance, VaR and CVaR (Expected Shortfall, Conditional
Tail Expectation)

σ VaR CVaR
I No Yes Yes
II Yes Yes Yes
III Yes No Yes
IV No Yes Yes

Normal Distribution:

f (x) = exp

(
− (x− µ)

2

2σ2

)
· 1√

2πσ2

and VaR and CVaR for normal random variable are given by

V aRα = µ+ σN−1 (α)

and

CV aRα = µ+
σ

1− α
N

(
V aRα − µ

σ

)
Rating Agencies: Moody’s and S&P
Internal Rating: All banks use to assess the creditworthiness of borrowers and counterparties.
Altman’s Z-Score: used to estimate default probabilities based on accounting data

Z = 1.2X1 + 1.4X2 + 3.3X3 + 0.6X4 + 0.999X5
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where X1 is the ratio of Working Capital to Total Assets, X2 is the ratio of Retained Earnings to Total
Assets, X3 is the ratio of Earnings Before Interests and Taxes (EBIT) to Book Value of Total Liabilities and
X5 is the ratio of Sales to Total Assets.

Hazard Rates means Default Intensities. Survival function S (t) = Pr (τ > t) = 1−F (t) and the hazard
rate λ (t) = −S

′(t)
S(t) and it can be easily derived that

S (t) = exp

(
−
ˆ t

0

λ (ν) dν

)
and Reduced Form models assume λ follows a SDE.

The Average Hazard Rate λ̄ (t) is defined by λ̄ (t) = − ln(S(t))
t and S (t) = exp

(
−λ̄ (t) · t

)
and F (t) =

1− exp
(
−λ̄ (t) · t

)
.

Cumulative Hazard Rate is defined by Γ (t) = − ln (S (t)) and Hazard Rate can also be written as

λ (t) =
f (t)

1− F (t)
= lim
h→0

P (τ ≤ t+ h|τ > t)

and CDF in terms of Hazard Rate can be represented as

F (t) = 1− exp (−Γ (t)) = 1− exp

(
−
ˆ t

0

λ (ν) dν

)
Hazard Rate can be interpreted as default intensities by observing the following derivation

P (t < τ ≤ t+ h|τ > t) =
S (t)− S (t+ h)

S (t)

= 1− exp

(
−
ˆ t+h

t

λ (s) ds

)
≈ h · λ (t)

Recovery Rate RR is used to indicate that when an obligor defaults on a loan, the percentage of the
value of the contract remains after default.

Loss give default LGD is defined by LGD = 1−RR.
Moody’s has found the following equation provided a reasonable fit to historical experience (1983-2004)

RR = 0.52− 6.9×AverageDefaultRate

Consider a zero-coupon bond, the implied default probability can be derived as

q =
1− e−sT

1−RR

by equating the theoretical bond price e−(r+s)T and the market price e−rT (q ·RR+ 1− q).
The difference between implied default probability q and real world default probability p: q is derived

under risk neutral probability measure for pricing purpose. For real world risk management and portfolio
selection, p derived from accounting data should be used.

Structural Models: Merton, First Passage (Firm defaults at τ = inf {t|At ≤ b} and P [t ≤ τ ≤ t+ dt] =

− ln(b/A0)√
2πσ2t3

exp

(
−
(

ln(b/A0)−
(
µ−σ22

)
t
)2

2tσ2

)
dt), Boundary Crossing.

Several Spreads:
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• TED Spread: is a measure of credit risk for inter-bank lending. It is the difference between 1) the
risk free 3 month U.S. treasury bill rate; and 2) the three month LIBOR rate, which represents the
rate at which banks typically lend to each other.

Merton’s Model:
• Capital Structure: Liability L due at T , Asset At follows a Geometric Brownian Motion

dAt = µAtdt+ σAtdZt

hence by Itô’s Lemma

At = A0 exp

((
µ− σ2

2

)
t+ σ · Zt

)
• At T , what happens

– If At ≥ L, bondholder receives L, shareholders receive AT − L
– If At < L, bondholder receives At,shareholders receive nothing.

• Payoff function for
– Shareholder: Call option on the assets max (At − L, 0)
– Bondholder: At −max (At − L, 0)

• Use Black-Scholes to price the equity of the firm

Et = AtΦ (d1)− e−rTLΦ (d2)

where d1 =
ln(AtL )+

(
r+σ2

2

)
(T−t)

σ
√
T−t and d2 = d1 − σ

√
T − t =

ln(AtL )+
(
r−σ22

)
(T−t)

σ
√
T−t

• Probability of default in Merton’s Model

– Real world: P [AT ≤ L] = N
(

ln
(
L
A0

)
−
(
µ−σ22

)
T

σ
√
T

)
– Risk neutral: Q [AT ≤ L] = N

((
ln
(
L
A0

)
−
(
r−σ22

)
T

σ
√
T

))
• Default happens AT < L is equivalent to ZT <

ln
(
L
A0

)
−
(
µ−σ22

)
T

σ , i.e., Z < N−1 (PD) where Z is a
standard normal random variable.

Portfolio Credit Risk:
CAPM:

Ri = rf + βi (RM − rf ) + εi

CAPM:: Security Market Line
E [Ri] = rf + βi (E [RM ]− rf )

where βi = cov(Ri,RM )
σ2
M

and βi is the slope of the regression line from fitting the equation (β = 1: Neutral,β >
1:Aggressive,β < 1:Defensive Stocks)

R = α+ βRM + ε

Note: Securities that lie below the SML are overpriced and vice versa.
Single Factor Model: (Developed by Vasicek, similar in thinking to CAPM) also called single factor

Gaussian copula model. The credit index corresponding to a given name as a systematic component plus an
idiosyncratic component

Yn = βnZ +
√

1− β2
n · εn

where Z and εn are i.i.d. standard normal and the default indicator has the form

1{Yn≤Hn}

Clearly it is a Bernoulli RV with mean PDn and variance PDn · (1− PDn).
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• The correlation between the credit indices of two different names is

ρYn,Ym =
cov (Yn, Ym)

σYnσYm
= E [YnYm]− E [Yn]E [Ym] = βnβmE

[
Z2
]

= βnβm

• The correlation between the default indicators of two different names is

ρ =
E
[
1{Yn≤Hn} · 1{Ym≤Hm}

]
− PDn · PDm√

PDn · (1− PDn) · PDm · (1− PDm)

• Bivariate normal distribution with correlation r is given by

N2 (x, y, r) = P (X ≤ x, Y ≤ y) =

ˆ x

−∞

ˆ y

−∞
e
− x

2−2rxy+y2

2(1−r2)
dxdy

2π
√

1− r2

• Total portfolio loss is given by

LT =

N∑
n=1

wn (1−RRn) · 1{Yn≤Hn}

and the systematic loss is given by

LS = E [LT |Z]

which is often referred to as the “large portfolio limit”.
• Conditional expectation for a given name is deduced as follows

E
[
1{Yn≤Hn}|Z

]
= P [Yn ≤ Hn|Z]

= P
[
βnZ +

√
1− β2

n · εn ≤ Hn|Z
]

= P

[[
εn ≤

Hn − βnZ√
1− β2

n

|Z

]]

= N

(
N−1 (PDn)− βnZ√

1− β2
n

)
Hence the systematic loss is a decreasing function of the global systematic factor Z by observing

LS =

N∑
n=1

wn (1−RRn)N

(
N−1 (PDn)− βnZ√

1− β2
n

)
• The VaR LS,α is simply given by

LS,α =

N∑
n=1

wn (1−RRn)N

(
N−1 (PDn)− βnZ1−α√

1− β2
n

)
by applying Euler’s Theorem

LS,α =

N∑
n=1

wn
∂LS,α
∂wn

where
∂LS,α
∂wn

= (1−RRn)N

(
N−1 (PDn)− βnZ1−α√

1− β2
n

)
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Basel Accord II: The single factor model forms the basis for the credit risk approach of the second Basel
Capital Accord. The economic capital is based on VaR which is at the 99.9% confidence level with a one
year time horizon.

The capital charge for an instrument is

EAD · LGD · (WCDR− PD) ·MA

where

WCDR = N

(
N−1 (PDn)− βnZ0.001√

1− β2
n

)
Multi-Factor Model: Credit index is defined by

Yn =

K∑
k=1

βn,kZk +

√√√√1−
K∑
k=1

β2
n,k · εn

and the total portfolio loss is given by

LT =

N∑
n=1

wn (1−RRn) · 1{Yn≤Hn}

and the systematic loss as before is given by

LS = E [LT |Z1, · · · , ZK ] =

N∑
n=1

wn (1−RRn)N

N−1 (PDn)− βn
∑K
k=1 βn,kZk√

1−
∑K
k=1 β

2
n,k


Note that in the multi-factor model, VaR can not be computed explicitly unless all factor correlations are

the same. Moreover, Large Portfolio Limit says

lim
N→∞

LN − E [LN |Z] = 0

Industry Examples: Credit Metrics/KMV

Y = β · Z + ε

where Y is the vector of default indicators, Z is the vector of systematic factors, β is the matrix of factor
loadings and ε is the vector of idiosyncratic factors.

Normal Mixture Models: Default indicators are given by

Y = m (W ) +
√
W ·X

where X = β ·Z + ε, Z ∼ N (0,Σ) , ε ∼ N (0, I). A key example is when v/W has a chi-squared distribution
with v degrees of freedom, this is a multivariate t model.

Bernoulli Mixture Models: Default indicators are given by

y = (y1, · · · , yN ) ∈ {0, 1}N

and
P [Y = y|Z = z] = ΠN

n=1PDn (Z)
yn (1− PDn (Z))

1−yn

Exchangeable Bernoulli Mixtures: Conditional Default Probability Q = PD (Z) and the distribution
of number of defaults is given by

P (M = n) =

(
N
n

)ˆ 1

0

qn (1− q)N−n dG (q)
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and there are three variations on
• Beta: Q ∼ B (a, b)
• Probit: Q = Φ (µ+ σZ) , Z ∼ N (0, 1)

• Logit: Q = F (µ+ σZ) , Z ∼ N (0, 1) , F (x) = (1 + exp (−x))
−1

Copulas: is used to model multivariate random variables. The basic idea is to separate the modelling into
Marginal Distributions and Dependence Structure(copula)

Fact: Suppose that X is a random variable with CDF F (x), then U = F (X) has a uniform distribution
on (0, 1). This can be seen from discussion below.

P (U ≤ x) = P (F (X) ≤ x) = P
(
X ≤ F−1 (x)

)
= F

(
F−1 (x)

)
= x

hence any random variable X with CDF F (x) can be generated via generating a uniform random variable
U on (0, 1) followed by applying F−1 (·) to this random variable.

Side note: If one wants to generate normal random variables, firstly Cholesky decompose Σ = LLT ,
then simulate a normal random vector with mean zero and variance-covariance matrix I, lastly define your
X = µ+ LZ

Correlation is not a good indicator of dependence since it only measures linear dependence.
• Formally, a copula is the joint distribution function of N random variables with uniform (0, 1)

marginal distributions.
• If X = (X1, · · · , XN ) is a random vector with joint distribution function F , and marginal distribu-

tions F1, · · · , FN then the copula of X is

C (u1, · · · , uN ) = F
(
F−1

1 (u1) , · · · , F−1
N (uN )

)
• Alternatively, the copula of X is the joint distribution of (F (X1) , · · · , F (XN ))

Suppose we want to generate N random variables with a given copula C, and marginal distributions
G1, · · · , GN

• First simulate U1, · · · , UN with joint distribution C
• Then compute Xn = G−1

n (Un)

Example: Gaussian Copula
Suppose we want to have N random variables with the same copula as an N dimensional normal random

variables with variance-covariance matrix Σ, but with marginal distributions G1, · · · , GN
First simulate X = (X1, · · · , XN ) from the distribution N (0,Σ), then define Yn = G−1

n (N (Xn))
Coefficient of Tail Dependence: Let X1 and X2 be random variables with marginal distribution functions

F1 and F2. Then the coefficient of upper tail dependence of X1 and X2 is given by

λu = λu (X1, X2) := lim
q→1−

P
(
X2 > F−1

2 (q) |X1 > F−1
1 (q)

)
notice that Λu depends only on the copula of (X1, X2), not on the marginal distributions.

For Gaussian Copula, λu = 0 asymptotically. For the copula with a t distribution, λu = 2tv+1

(
−
√

(v+1)(1−ρ)
1+ρ

)
Archimedean Copulas

• General Form: C (u1, · · · , uN ) = Φ−1
(∑N

n=1 φ (un)
)

• Clayton: φ (t) = θ−1
(
t−θ − 1

)
, θ ≥ −1

• Gumbel: φ (t) = (− ln t)
θ
, θ ≥ 1

• Frank: φ (t) = − ln
(
e−θt−1
e−θ−1

)
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2. Robust Portfolio Optimization

2.1. Black-Litterman Model. Incorporate investor views into the mean-variance model. Base model
makes an equilibrium assumption, i.e., investors who do not have a view on the market will hold the market
portfolio. In order to achieve the above goal, one has to

• Step One: Define Market Equilibrium
• Step Two: Express Investor Views
• Step Three: Combine and Estimate

2.1.1. CAPM Assumptions.
E [Ri]−Rf = βi (E [RM ]−Rf )

where βi = cov(Ri,RM )
σ2
M

, RM =
∑N
n=1 w

b
nRn. Thus

E [Ri]−Rf =
E [RM ]−Rf

σ2
M

·
N∑
n=1

wbncov (Ri, Rn)

For simplicity, CAPM assumptions are represented as

Π =

 E [R1]−Rf
...

E [RN ]−Rf

 = δ · Σwb

where scalar δ =
E[RM ]−Rf

σ2
M

, Σ is an n × n variance-covariance matrix with the i-th row, j-th column
component being cov (Ri, Rj) and wb is an n-by-1 vector containing the weights.

Uncertainty in Mean Estimation is modeled as

Π = µ+ εΠ, εΠ ∼ N (0, τ · Σ)
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where τ is chosen to represent the degree of uncertainty in the estimate of the vector of expected returns.

2.1.2. Investor Views.
q = Pµ+ εq, εq ∼ N (0,Ω)

where q is a K dimensional random vector (K views), P is a K ×N matrix expressing the views and Ω is a
K ×K covariance matrix expressing the degree of confidence in the views. For example, N = 5 stocks

• Stock 1 will have a return of 1.5%
• Stock 3 will outperform Stock 2 by 4%.

Above two views can be incorporated into the following system

(
1.5%
4%

)
=

(
1 0 0 0 0
0 −1 1 0 0

)
µ1

µ2

µ3

µ4

µ5

+

(
ε1
ε2

)

2.1.3. Combine and Estimate. A linear model for µ combining equilibrium and investor views is given by

y = Xµ+ ε, ε ∼ N (0, V )

where

y =

(
Π
q

)
, X =

(
I
P

)
, V =

(
τΣ 0
0 Ω

)
The generalized lease squares estimator for the above model is given by

µ̂BL =
(
X ′V −1X

)−1
X ′V −1y

=

((
I P ′

)( (τΣ)
−1

Ω−1

)(
I
P

))−1 (
I P ′

)( (τΣ)
−1

Ω−1

)(
Π
q

)
=

((
I P ′

)( (τΣ)
−1

Ω−1

))−1 (
I P ′

)( (τΣ)
−1

Π
Ω−1q

)
=

(
(τΣ)

−1
+ P ′Ω−1P

)−1 (
(τΣ)

−1
Π + P ′Ω−1q

)
Note that if we only consider views, µ̂I = (P ′P )

−1
P ′q and P (P ′P )

−1
P = I. Therefore after decomposition

of above, we get

µ̂BL =
(

(τΣ)
−1

+ P ′Ω−1P
)−1

(τΣ)
−1

Π︸ ︷︷ ︸
Equlibrium(CAPM)

+
(

(τΣ)
−1

+ P ′Ω−1P
)−1

P ′Ω−1Pµ̂I︸ ︷︷ ︸
V iews

= wΠΠ + wqµ̂I

where wΠ + wq = I. We can further get

µ̂BL = Π︸︷︷︸
CAPM

+ τ · ΣP ′ (Ω + τ · PΣP ′)
−1

(q −Π)︸ ︷︷ ︸
Tilt

and the variance of the Black-Litterman estimator can be calculated explicitly as

var (µ̂BL) =
(
X ′V −1X

)−1
=
(

(τ · Σ)
−1

+ P ′Ω−1P
)−1
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2.2. Two Fund Theorem Recap. Any mean variance efficient portfolio can be written as a combination
of two particular portfolios.

The mean variance optimization problem is given by

minw
1
2w

TΣw − τwTµ
st. wT1 = 1

The Lagrangian can be written as

L (w, λ) =
1

2
wTΣw − τwTµ− λ

(
wT1− 1

)
leading to the optimality condition

Σw − τµ− λ1 = 0

and the optimal portfolio is given by
w = τΣ−1µ+ λΣ−11

and this is a linear combination of the minimum risk portfolio wmr = Σ−11
1TΣ−11

and the market portfolio
wm = Σ−1µ

1TΣ−11
.

Suppose that there is a risk-free asset with return R0 and N risky assets with return Rn, n ∈ {1, · · · , N}.
The utility maximization problem of investor k is given by

maxE
[
U
(∑N

n=0 wnRn

)]
st.

∑N
n=1 wn = 1

Suppose that the utility function for investor k satisfies

U ′k (x) = (Ak +Bkx)
−c

where Ak, Bk can vary between investors, but c is the same for all investors. Prove the following:

Theorem 1. (Two-Fund Theorem) All investors will hold a combination of the risk-free security and a fixed
portfolio of the risky assets, i.e., while investors may place different amounts of wealth in the risky assets,
they will always invest in the risky assets in the same proportions.

Proof. Omitted here. �

2.3. Can the sharp ratio between two risky assets exceed the slope of capital market line
(CML)?. Why CAPM? What is the simple proof of this market equilibrium model?

We know that a marginal utility of asset i is equal to the expected return minus its contribution to the
volatility of the portfolio, i.e.,

E [ri]− aσi,m = k

where a is the risk aversion, σi,m = cov (ri, rm) and k must be the same for every asset because of the
optimality assumptions (Otherwise one would invest more on the other asset with higher risk premium).
Notice that

E [rf ]− aσf,m = rf = k

and
E [rm]− aσm,m = rf

which is equivalent to

a =
E [rm]− rf
var (rm)
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therefore the CAPM model can be represented as

E [ri]− rf =
σi,m

var (rm)
(E [rm]− rf )

The expected payoff of the portfolio is given by

R =

N∑
n=1

wnRn

and the variance of R is trivially derived as

var (R) = E
[
(R− E [R])

2
]

= E
[
R2
]
− E [R]

2

= E

( N∑
n=1

wnRn

)2
− E

[
N∑
n=1

wnRn

]2

= E

 N∑
i=1

N∑
j=1

wiwjRiRj

− N∑
i=1

N∑
j=1

wiwjE [Ri]E [Rj ]

=

N∑
i=1

N∑
j=1

wiwj (E [RiRj ]− E [Ri]E [Rj ])

=

N∑
i=1

N∑
j=1

wiwjcov (Ri, Rj)

= wTΣw

where Σ is the covariance matrix with (i, j)-th component being cov (Ri, Rj). For the purpose of illustration,
let wi = 1

N ,∀i ∈ {1, · · · , N}, cov (Ri, Rj) = a,∀i, jand var (Ri) = b,∀i, we can see that

var (R) =
1

N
a+

N (N − 1)

N2
b =

1

N
a+

N − 1

N
b

the covariance can not be diversified away as we increase the number of assets in the portfolio.
The problem can be mathematically stated as is it possible to have

E [Ri]− E [Rj ]

σ (Ri −Rj)
>

E [Rmv]− rf
σ (Rmv)

The short answer is NO since the above implies

βi − βj >
σ (Ri −Rj)
σ (Rmv)

hence
cov (Ri −Rj , Rmv)
σ (Ri −Rj)σ (Rmv)

> 1

which is not possible.
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3. Numerical Computation for Financial Modelling

It is always good to know that by definition

V ar (Y |X) = E
[
(Y − E [Y |X])

2 |X
]

and
V ar (Y ) = E [var (Y |X)] + var (E [Y |X])

3.1. Brownian Motion. The Brownian motion with drift is given by

dX = αdt+ σdZ

where αdt is the drift term, σ is the volatility and dZ is a random term in the form of dZ = φ
√
dt , in which

φ is a standard normal random variable. Notice that

E [dX] = αdt

and
V ar (dX) = σ2dt

and it can be both numerically or analytically verified that, as dt → 0, with probability one, dZ2 → dt. In
another word, dZ2 becomes non-stochastic (Quadratic Variation).

Lemma 2. (Itô’s Lemma) Suppose we have some function G = G (S, t) and dS = a (S, t) dt+ b (S, t) dZ,
then

dG =

(
aGS +GSS

b2

2
+Gt

)
dt+GSbdZ

Proof. We take a Taylor expansion on dG up to the second order approximation

dG = GSdS +Gtdt+
1

2
GSS (dS)

2
+

1

2
Gtt (dt)

2
+GS,t (dS · dt)

= GS (adt+ bdZ) +Gtdt+
1

2
GSSb

2dt

=

(
aGS +

b2

2
GSS +Gt

)
dt+ bGSdZ

�

Application of Itô’s Lemma: Solve GBM dAt = µAtdt+ σAtdZt
Notice that

d lnAt =

(
µAt

1

At
+
σ2A2

t

2

(
− 1

A2
t

))
dt+ σAt

1

At
dZt =

(
µ− σ2

2

)
dt+ σdZt

Taking integration on both side from 0 to t, one can easily get

ln
At
A0

=

(
µ− σ2

2

)
t+ σ (Zt − Z0)

hence

At = A0 exp

((
µ− σ2

2

)
t+ σZt

)
(Z0 = 0) by the definition of Wiener Process.
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3.2. Black-Scholes Equation.

• The stock price follows GBM. (dSt = µStdt+ σStdZt, i.e., St = S0e

(
µ−σ22

)
t+σZt)

• The risk free rate of return is a constant r. (dBt = rBtdt, i.e., Bt = B0e
rt)

• There are no arbitrage opportunities
• Short selling is permitted

Let C (S, t) be the price at time t of the derivative. Premium is C (S0, 0) and payoff at maturity T is given
by C (ST , T ) = (ST −K)

+ for a call.
By Itô’s formula,

dC =
∂C

∂t
dt+

∂C

∂S
dS +

1

2

∂2C

∂S2
(dS)

2

therefore

dC =

(
Ct + µSCS +

1

2
σ2S2CSS

)
dt+ CSσSdZ

By no arbitrage pricing theorem, price of the derivative is equal to the price of a replicating portfolio.
We use Vt to denote the value of the portfolio at time t. It is simply composed of stocks and bond, i.e.,

Vt = atSt + btBt. Assume it is a self-financing strategy.

Vt = V0 +

ˆ t

0

asdSt +

ˆ t

0

bsdBs

then

dVt = atdSt + btdBt

= (atµS + btrBt) dt+ atσSdZt

Since V is a replicating portfolio, i.e., Vt = C (St, t) ,∀t ∈ [0, T ], we get dVt = dC. Thus

at = CS

and

Ct + µSCS +
1

2
σ2S2CSS = atµS + btrBt

Rearrange the above terms and simplify in use of bt = C−CSSt
Bt

, we get

−rC + Ct + rSCS +
1

2
σ2S2CSS = 0

which is the classic Black-Scholes equation.
Feynman-Kac Formula: (Under Risk Neutral Measure)
If S follows dS = rSdt+σSdZ and C satisfies −rC +Ct + rSCS + 1

2σ
2S2CSS = 0, C (ST , T ) gives payoff

at T , then

C (St, t) = E
[
e−r(T−t)C (ST , T ) |Ft

]
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The premium for a European call is

C (S0, 0) = E
[
e−rTC (ST , T ) |F0

]
= e−rTE

[
max

(
S0e

(
r−σ22

)
T+ZT −K, 0

)]
= e−rTE

[(
S0e

(
r−σ22

)
T+ZT −K

)
· 1{ST>K}

]
= e−rTS0e

(
r−σ22

)
TE
[
eZT · 1{ST>K}

]
− e−rTK · E

[
1{ST>K}

]
Notice that

E
[
1{ST>K}

]
= P (ST > K) = P (lnST > lnK)

Since lnST ∼ N
(

lnS0 +
(
r − σ2

2

)
T, σ2T

)
, we can get

P (lnST > lnK)

= P
(

lnST−lnS0−
(
r−σ22

)
T

σ
√
T

>
lnK−lnS0−

(
r−σ22

)
T

σ
√
T

)
= 1−N

(
ln K
S0
−
(
r−σ22

)
T

σ
√
T

)
= N

(
ln(S0K )+

(
r−σ22

)
T

σ
√
T

)

The first term can be also derived in a similar fashion. Actually one can use E
[
eX · 1{eX>a}

]
= em+V

2 Φ
(
m+V−ln a√

V

)
where X ∼ N (m,V ) or use change of measure method.

In all, the pricing formula for Black-Scholes is given by

C (S0, 0) = S0N

 ln
(
S0

K

)
+
(
r + σ2

2

)
T

σ
√
T

−Ke−rTN
 ln

(
S0

K

)
+
(
r − σ2

2

)
T

σ
√
T



3.3. Discrete Hedging. Bear in mind these Greeks for Black-Scholes Model
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‘Hedging’ in its broadest sense means the reduction of risk by exploiting relationships or correlation (or
lack of correlation) between various risky investments. The purpose behind hedging is that it can lead to an
improved risk/return.

Model-independent hedging: An example of such hedging is put-call parity. There is a simple rela-
tionship between calls and puts on an asset (when they are both European and with the same strikes and
expiries), the underlying stock and a zero-coupon bond with the same maturity. This relationship is com-
pletely independent of how the underlying asset changes in value. Another example is spot-forward parity.
In neither casedo we have to specify the dynamics of the asset, not even its volatility, to find a possible
hedge. Such model-independent hedges are few and far between.

Model-dependent hedging: Most sophisticated finance hedging strategies depend on a model for the
underlying asset. The obvious example is the hedging used in the Black–Scholes analysis that leads to a whole
theory for the value of derivatives. In pricing derivatives we typically need to at least know the volatility of
the underlying asset. If the model is wrong then the option value and any hedging strategy could also be
wrong.

Delta hedging One of the building blocks of derivatives theory is delta hedging. This is the theoretically
perfect elimination of all risk by using a very clever hedge between the option and its underlying. Delta
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hedging exploits the perfect correlation between the changes in the option value and the changes in the stock
price. This is an example of ‘dynamic’ hedging; the hedge must be continually monitored and frequently
adjusted by the sale or purchase of the underlying asset. Because of the frequent rehedging, any dynamic
hedging strategy is going to result in losses due to transaction costs. In some markets this can be very
important.

Gamma hedging To reduce the size of each rehedge and/or to increase the time between rehedges, and
thus reduce costs, the technique of gamma hedging is often employed. A portfolio that is delta hedged is
insensitive to movements in the underlying as long as those movements are quite small. There is a small
error in this due to the convexity of the portfolio with respect to the underlying. Gamma hedging is a
more accurate form of hedging that theoretically eliminates these second-order effects. Typically, one hedges
one, exotic, say, contract with a vanilla contract and the underlying. The quantities of the vanilla and the
underlying are chosen so as to make both the portfolio delta and the portfolio gamma instantaneously zero.

Vega hedging The prices and hedging strategies are only as good as the model for the underlying. The
key parameter that determines the value of a contract is the volatility of the underlying asset. Unfortunately,
this is a very difficult parameter to measure. Nor is it usually a constant as assumed in the simple theories.
Obviously, the value of a contract depends on this parameter, and so to ensure that a portfolio value is
insensitive to this parameter we can vega hedge. This means that we hedge one option with both the
underlying and another option in such a way that both the delta and the vega, the sensitivity of the portfolio
value to volatility, are zero. This is often quite satisfactory in practice but is usually theoretically inconsistent;
we should not use a constant volatility (basic Black–Scholes) model to calculate sensitivities to parameters
that are assumed not to vary. The distinction between variables (underlying asset price and time) and
parameters (volatility, dividend yield, interest rate) is extremely important here. It is justifiable to rely on
sensitivities of prices to variables, but usually not sensitivity to parameters. To get around this problem it
is possible to independently model volatility, etc., as variables themselves. In such a way it is possible to
build up a consistent theory.

Superhedging In incomplete markets you cannot eliminate all risk by classical dynamic delta hedging.
But sometimes you can superhedge meaning that you construct a portfolio that has a positive payoff whatever
happens to the market. A simple example of this would be to superhedge a short call position by buying
one of the stock, and never rebalancing. Unfortunately, as you can probably imagine, and certainly as in
this example, superhedging might give you prices that differ vastly from the market.

Crash (Platinum) hedging The final variety of hedging is specific to extreme markets. Market crashes
have at least two obvious effects on our hedging. First of all, the moves are so large and rapid that they
cannot be traditionally delta hedged. The convexity effect is not small. Second, normal market correlations
become meaningless. Typically all correlations become one (or minus one). Crash or Platinum hedging
exploits the latter effect in such a way as to minimize the worst possible outcome for the portfolio. The
method, called CrashMetrics, does not rely on parameters such as volatilities and so is a very robust hedge.
Platinum hedging comes in two types: hedging the paper value of the portfolio and hedging the margin calls.

4. Quick Overview of Mathematical Models for Finance

CIR Model, Heston Model, HJM etc.

5. Interest Rate Models

From one factor short rate to two factor short rate to Heath-Jarrow-Morton Framework.
Market Models: LFM, LSM
Consider a perfect market, i.e., all bonds with all maturities exist. There is only one interest rate for

lending and for borrowing.
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P (t, T ) denotes the price at t of the zero-coupon bond with maturity T . Of course, P (T, T ) = 1. Yield
to maturity is denoted as Y (t, T ). P (t, T ) is Ft-measurable and it is always positive and continuously
differentiable.

A forward contract is an agreement to buy at T the asset S for SF (0, T ). It is designed to enter into
with no premium cost. The payoff for forward contract at T is ST − SF (0, T ). In order to replicate the
payoff of the forward contract, a buy&hold strategy until T is to buy 1 share of stock at time 0 for S0 and
sell SF (0, T ) units of bonds for P (0, T ) . At time T , the payoff of this portfolio is ST − SF (0, T ) which is
identical with the payoff of the forward contract. By law of one price principle, the price of the strategy is
exactly the same to the price of the forward, i.e.,

S0 − SF (0, T )P (0, T ) = 0

Solving above equation, we get the forward price (strike price)

SF (0, T ) =
S0

P (0, T )

and the forward price at time t is

SF (t, T ) =
St

P (t, T )

Similarly, a forward rate for [S, T ]with 0 < S < T is a contract guaranteeing a risk-free rate. We want
to replicate a contract that allows us to invest 1 at time S and get R (0, S, T ) interest rate for the period
[S, T ]. It is designed at 0 with a 0 premium.

There are two cash flows: at time S, we invest 1 dollar and at time T , we receive eR(0,S,T )(T−S)in return.
To replicate the above payoff, we devise a strategy:
• At time 0, sell a bond with maturity S (receive P (0, S)instantly), buy bond with maturity T for

#P (0,S)
P (0,T ) shares.

• At time S, must pay 1 dollar
• At time T , you receive P (0,S)

P (0,T ) dollars.

Therefore let eR(0,S,T )(T−S) = P (0,S)
P (0,T ) , we can get

R (0, S, T ) =
1

T − S
(lnP (0, S)− lnP (0, T ))

Similarly, a forward rate is given by

R (t, S, T ) =
− (lnP (t, T )− lnP (t, S))

T − S
and when T → S, we get the instantaneous forward rate

R (t, S, T )→ −∂ lnP (t, T )

∂T
= F (t, T )

If F (t, T ) is known for all t and T ,

P (t, T ) = exp

(
−
ˆ T

t

F (t, u) du

)
Forward rates characterize the bond prices. Yield to maturity P (t, T ) = exp (−Y (t, T ) (T − t))thus

Y (t, T ) =

´ T
t
F (t, u) du

T − t
= − lnP (t, T )

T − t
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r (t) is the yield of investment at time t for an infinitesimal time period and

Y (t; t+ dt) = − lnP (t, t+ dt)

dt
=

∂

∂T
(− lnP (t, T )) |T=t = F (t, t)

Note that

B (t) = exp

(ˆ t

0

rsds

)
ie, bank account with stochastic interest rates. If we assume there is no arbitrage in the market, there are
strong relationships among dP (t, T ) , dF (t, T ) , drt, dBt

Linkage between P (t, T ) and rt:
If rt is constant, P (t, T ) = exp (−r (T − t)) .If not, is it true P (t, T ) = exp

(
−
´ T
t
rsds

)
? If there is no

arbitrage, there must exist risk neutral measure Q such that

P (t, T ) = EQ

[
exp

(
−
ˆ T

t

rsds

)
|Ft

]
Term Structure of Interest Rate
Short Rates Model:

drt = µ (t, rt) dt+ σ (t, rt) dWt

notice that r is not a traded asset. The bank account

dBt = rtBtdt

and price of ZC bond
P (t, T ) = F (t, rt, T ) := FT (t, r)

can not be replicated with B because there is no unique price for P . There is a strong relationship between
P (t, T ) and P (t, S). The idea to find the link is to build a portfolio with P (t, T ) and P (t, S) to replicate a
bank account. It is equivalent to building an adapted self-financing strategy that is risk free.

V (t) = h1 (t)P (t, T ) + h2 (t)P (t, S)

where h1 (t) denotes the number of shares of bond with maturity T and h2 (t) denotes the number of shares
of bond with maturity S. We want to make V riskless and self-financing.

dV (t) = h1dP (t, T ) + h2dP (t, S)

By Itô’s formula,

dP (t, T ) = FTt dt+ FTr dr +
1

2
FTrr (dr)

2

= FTt dt+ +FTr (µdt+ σdW ) +
1

2
FTrrσ

2dt

=

(
FTt + µFTr +

1

2
σ2FTrr

)
dt+ σFTr dW

hence
dP (t, T )

P (t, T )
= αT dt+ σT dW
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where αT :=
FTt +µFTr + 1

2σ
2FTrr

FT
and σT :=

σFTr
FT

. Thus dV (t,T )
V (t) can be represented as

dV (t, T )

V (t)
=

h1P (t, T )
(
αT dt+ σT dW

)
+ h2P (t, S)

(
αSdt+ σSdW

)
V (t)

=

h1P (t, T )

V (t)︸ ︷︷ ︸
ut

αT +
h2P (t, S)

V (t)︸ ︷︷ ︸
vt

αS

 dt

+

(
h1P (t, T )

V (t)
σT +

h2P (t, S)

V (t)
σS
)
dW

Notice that ut + vt = 1 and we want V (t) riskless, i.e., utσT + vtσ
S = 0 therefore

ut = − σS

σT − σS
, vt =

σT

σT − σS
The no arbitrage condition implies that

utα
T + vtα

S = rt

which is equivalent to
−σS

σT − σS
αT +

σT

σT − σS
αS = rt

∀S, T ,
αT − rt
σT

=
αS − rt
σS

= λ (t)

this ratio is the market price of interest rate risk and it is independent of T and S. In conclusion, we
arrive at the PDE for bond price

FTt + (µ− λσ)FTr +
1

2
σ2FTrr − rFT = 0

with the boundary condition FT (T,R) = 1 where αT =
FTt +µFTr + 1

2F
T
rrσ

2

FT
, σT =

σFTr
FT

and λ = αT−r
σT

.
Moreover,

FT (t, rt, T ) = EQ

[
e−
´ T
t
rsds

]
where

drt = (µ− λσ) dt+ σdZt

where Z is a BM under Q and each λ gives a risk neutral measure.
The Vasicek model (one factor model describing the evolution of interest rate) is given by

drt = (b− ar)︸ ︷︷ ︸
µ(t,r)

dt+ σ︸︷︷︸
σ(t,r)

dW

By Itô’s lemma, we can get

d
(
rte

at
)

= areatdt+ eat ((b− ar) dt+ σdW ) + 0

= beatdt+ σeatdW

Taking integration on both sides, we get

rT e
aT − r0 =

ˆ T

0

beatdt+ σ

ˆ T

0

eatdWt
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thus

rT = r0e
−at + e−aT


ˆ T

0

beatdt+ σe−aT
ˆ T

0

eatdW︸ ︷︷ ︸
∼N(0,σ2e−2aT

´ T
0
e2atdt)


CIR model (Cox-Ingersoll-Ross)

dr = a (b− r) dt+ σ
√
rdW

It can be proved that r > 0 almost surely.
Hull-White Model

dr = (θ(t)− ar) dt+ σdW

Dothan Model

dr = ardt+ σrdW

hence

rt = r0 exp

((
a− σ2

2

)
t+ σWt

)
≥ 0

In a one factor model, cor (P (t, T1) , P (t, T2)) = 1 which is not true in a two-factor model.
HJM model Refer to Wikipedia
The classical short rate models are shown in the following table: From “Interest Rate Models - Theory

and Practice” by Brigo
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Where V, CIR, D, EV, HW, BK, MM, CIR++, EVV stand respectively for the Vasicek (1977) model, the
Cox, Ingersoll and Ross (1985) model, the Dothan (1978) model, the Exponential Vasicek model, the Hull
and White (1990) model, the Black and Karasinski (1991) model, the Mercurio and Moraleda (2000) model,
the CIR++ model and the Extended Exponential Vasicek model. N and Y stand respectively for “No” and
“Yes”, whereas Y∗ means that rates are positive under suitable conditions for the deterministic function ϕ;
N , LN , NCχ2, SNCχ2, SLN denote respectively normal, lognormal, noncentral χ2, shifted noncentral χ2

and shifted lognormal distributions; AB(O) stands for Analytical Bond (Option) price.
Interest rate swap is a contract between two parties to exchange interest on a specified principal. The

exchange may be fixed for floating or floating of one tenor for floating of another tenor. Fixed for floating
is a particularly common form of swap. These instruments are used to convert a fixed-rate loan to floating,
or vice versa. Usually the interval between the exchanges is set to be the same as the tenor of the floating
leg. Furthermore, the floating leg is set at the payment date before it is paid. This means that each floating
leg is equivalent to a deposit and a withdrawal of the principal with an interval of the tenor between them.
Therefore all the floating legs can be summed up to give one deposit at the start of the swap’s life and a
withdrawal at maturity. This means that swaps can be valued directly from the yield curve without needing
a dynamic model. When the contract is first entered into the fixed leg is set so that the swap has zero value.
The fixed leg of the swap is then called the par swap rate and is a commonly quoted rate. These contracts
are so liquid that they define the longer-maturity end of the yield curve rather than vice versa.

Mortgage Backed Security (MBS) is a pool of mortgages that have been securitized. All of the
cashflows are passed on to investors, unlike in the more complex CMOs. The risks inherent in MBSs are
interest rate risk and prepayment risk, since the holders of mortgages have the right to prepay. Because
of this risk the yield on MBSs should be higher than yields without prepayment risk. Prepayment risk is
usually modelled statistically, perhaps with some interest rate effect. Holders of mortgages have all kinds of
reasons for prepaying, some rational and easy to model, some irrational and harder to model but which can
nevertheless be interpreted statistically.

Straddle is a portfolio consisting of a long call and a long put with the same strike and expiration. Such
a portfolio is for taking a view on the range of the underlying or volatility.

Swaption is an option on a swap. It is the option to enter into the swap at some expiration date, the
swap having predefined characteristics. Such contracts are very common in the fixed income world where a
typical swaption would be on a swap of fixed for floating. The contract may be European so that the swap
can only be entered into on a certain date, or American in which the swap can be entered into before a
certain date or Bermudan in which there are specified dates on which the option can be exercised.

6. Several Pricing Examples

6.1. Call on Call. Call option will maturity T1, strike L and the underlying is a call option with strike K
and a maturity T2(T1 < T2). The payoff of this derivative is given by(C (T1, ST1

,K, T2)− L)
+and this call

on call option can be priced using risk-neutral method. The price at time 0 is given by

EQ

[
e−rT1 (C (T1, ST1

,K, T2)− L)
+
]

= e−rT1EQ

[
C (T1, ST1

,K, T2) · 1{C(T1,ST1 ,K,T2)>L} − L · 1{C(T1,ST1 ,K,T2)>L}
]

Notice that

C (T1, ST1
,K, T2) = e−r(T2−T1)EQ

[
(ST2

−K)
+ |FT1

]
= ST1N (d1)− ke−r(T2−T1)N (d2)
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where

d1 =
ln
(
ST1
K

)
+
(
r + 1

2σ
2
)

(T2 − T1)

σ
√
T2 − T1

and
d2 = d1 − σ

√
T2 − T1

Keep in mind that C (T1, ST1
,K, T2) is a random variable at time 0 but it is FT1

-measurable. Let f (ST1
)

denote this option value. (f is strictly increasing)
Hence

{C (T1, ST1
,K, T2) > L} =

{
ST1

> f−1 (L)
}

If T2 = T1,
{

(ST2
−K)

+
> L

}
= {ST2

> K + L} and

∂C (T1, ST1 ,K, T2)

∂ST1

= N (d1) ∈ (0, 1) > 0

by observing that (Delta of a call option)
∂C

∂ST1

= N (d1) + ST1
N ′ (d1) · ∂d1

∂ST1

− ke−r(T2−T1)N ′ (d2)
∂d2

∂ST1︸ ︷︷ ︸
=0

where N ′ (x) = e−
x2

2√
2π
. Let S? be such that C (T1, S

∗,K, T2) = L which can be found numerically. Then the
price of the call on call is

e−rT1EQ

[
C (T1)1{ST1>S?}

]
− e−rT1L ·Q (ST1

> S?)

Note that

Q (ST1 > S?) = Q
(
S0e

(
r−σ22

)
T1+σT1 > S?

)

= Q

WT1√
T1

>
ln (S?/S0)−

(
r − σ2

2

)
T1

σ
√
T1


= N

 ln (S0/S
?) +

(
r − σ2

2

)
T1

σ
√
T1


Recall that E [E [Y |F ]] = E [Y ] hence as a direct result, if X is F-measurable, E [XE [Y |F ]] = E [XY ]. In

regard to the first term

EQ

[
C (T1) · 1{ST1>S?}

]
= EQ

[
e−r(T2−T1) · 1{ST1>S?} · EQ

[
(ST2

−K)
+ |FT1

]]
= e−r(T2−T1)E

[
1{ST1>S?} · (ST2 −K)

+
]

= e−r(T2−T1) E
[
1{ST1>S?} · ST2

· 1{ST2>K}
]

︸ ︷︷ ︸
A

−e−r(T2−T1) Q (ST1
> S?, ST2

> K)︸ ︷︷ ︸
B

where

B = Q
(

lnS0 +

(
r − σ2

2

)
T1 + σWT1

> lnS?, lnS0 +

(
r − σ2

2

)
T2 + σWT2

> lnK

)
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Define
N (a, b, ρ) = P (X ≤ a, Y ≤ b)

where X ∼ N (0, 1) , Y ∼ N (0, 1) with correlation factor ρ = cov (X,Y ). Thus

B = Q

WT1√
T1

>
ln (S?/S0)−

(
r − σ2

2

)
T1

σ
√
T1

,
WT1√
T1

>
ln (K/S0)−

(
r − σ2

2

)
T2

σ
√
T2


and notice that

Q (X > c, Y > d) = 1−Q (X ≤ c, Y <∞)−Q (X <∞, Y ≤ d) + Q (X ≤ c, Y ≤ d)

= 1−N (c,∞, ρ)−N (∞, d, ρ) +N (c, d, ρ)

where c =
ln(S?/S0)−

(
r−σ22

)
T1

σ
√
T1

and d =
ln(K/S0)−

(
r−σ22

)
T2

σ
√
T2

.

A : = E
[
1{ST1>S?} · ST2

· 1{ST2>K}
]

= E
[
S0e

(
r−σ22

)
T2+σT21{ST1>S?} · 1{ST2>K}

]
= S0e

rT2E

[
dQ̃
dQ
· 1{ST1>S?,ST2>K}

]
By Girsanov theorem, W̃ is a BM under Q̃. (EQ

[
dQ̃
dQX

]
= EQ̃ [X] , which can be seen from EQ

[
dQ̃
dQX

]
=´

dQ̃
dQXdQ =

´
XddQ̃, not rigorous). Thus

A = S0e
rT2EQ̃

[
1{ST1>S?,ST2>K}

]
= S0e

rT2Q̃

W̃T1√
T1

>
ln (S?/S0)−

(
r − σ2

2

)
T1

σ
√
T1

,
W̃T1√
T1

>
ln (K/S0)−

(
r − σ2

2

)
T2

σ
√
T2


6.2. Exchange Option. S1 and S2 are two assets. Exchange option gives the right to receive S1 by paying
S2 at T . Thus the payoff function is given by

XT = (S1(T )− S2(T ))
+

where {
dS1

S1
= rdt+ σ11dW1 + σ12dW2

dS2

S2
= rdt+ σ21dW1 + σ22dW2

The price of the exchange option can be derived by computing

E
[
e−rT (S1 (T )− S2 (T ))

+
]

or make use of the following theorem since Φ
(−→
S
)

= max (S1 − S2, 0) is homogeneous of degree 1.

Theorem 3. (Theorem of Reduction) Let
−→
S = (S1, · · · , Sn) and Φ

(
λ
−→
S
)

= λΦ
(−→
S
)
. Then the price of

the derivative at t is given by

F
(
t,
−→
St

)
= SnG

(
t,
S1

Sn
, · · · , Sn−1

Sn

)
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where G solves

0 = Gt +
1

2

n−1∑
i=1

n−1∑
j=1

ξiξjGij (t, ξ1, · · · , ξn−1)Dij

G
(
t,
−→
ξ
)

= Φ (ξ1, · · · , ξn−1, 1)

Gij =
∂2G

∂ξi∂ξj
Dij = Cij + Cnn + Cin + Cnj

and
C = ΣΣT

where

Σ =

 σ11 · · · σ1n

...
. . .

...
σn1 · · · σnn


and

dSi
Si

= µidt+
∑
j

σijdWj

For exchange option, the terminal payoff is F (T, S1, S2) = max (S1 − S2, 0). In general, the price of the
exchange option at time t is given by

F (t, S1 (t) , S2 (t)) = S2 (t)G

(
t,
S1 (t)

S2 (t)

)
and

Gt +
1

2
ξ2Gξξ (t, ξ)D = 0

and

Σ =

(
σ1 0

σ2ρ σ2

√
1− ρ2

)
thus

ΣΣT =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
Thus

D = σ2
1 + σ2

2 + 2ρσ1σ2

Therefore we get

Gt +
1

2
ξ2GξξD = 0

G (t, ξ) = F (t, ξ, 1) = (ξ − 1)
+

Hence
G0 = EQ

[
e−rT (ST − 1)

+
]

and
dST
ST

= rdt+
√
DdW
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Note that the standard Black-Scholes PDE is given by

−rC + Ct + rSCS +
1

2
σ2S2CSS = 0

hence r = 0,K = 1, σ =
√
D in

Gt +
1

2
ξ2GξξD = 0

In conclusion,
G (0, ξ0) = ξ0N (d1)−N (d2)

where d1 =
ln ξ0+DT

2√
DT

and d2 = d1 − σ
√
T .

Finally,

F0 = S2 (0)G0

(
0,
S1 (0)

S2 (0)

)
= S1 (0)N (d1)− S2 (0)N (d2)

where d1 =
ln(S1(0)/S2(0))+DT

2√
DT

and d2 = d1 − σ
√
T .

Bear in mind that d
−→
S = r

−→
S dt+

−→
S Σd

−→
W

6.3. Change of Numéraire. See reference books on the list.


